While experimental studies have suggested that non-coding ultraconserved DNA elements are central nodes in the regulatory circuitry that specifies mammalian embryonic development, the possible functional relevance of their >200bp of perfect sequence conservation between human-mouse-rat remains obscure 1,2. Here we have compared the in vivo enhancer activity of a genome-wide set of 231 non-exonic sequences with ultraconserved cores to that of 206 sequences that are under equivalently severe human-rodent constraint (ultra-like), but lack perfect sequence conservation. In transgenic mouse assays, 50percent of the ultraconserved and 50percent of the ultra-like conserved elements reproducibly functioned as tissue-specific enhancers at embryonic day 11.5. In this in vivo assay, we observed that ultraconserved enhancers and constrained non-ultraconserved enhancers targeted expression to a similar spectrum of tissues with a particular enrichment in the developing central nervous system. A human genome-wide comparative screen uncovered ~;;2,600 non-coding elements that evolved under ultra-like human-rodent constraint and are similarly enriched near transcriptional regulators and developmental genes as the much smaller number of ultraconserved elements. These data indicate that ultraconserved elements possessing absolute human-rodent sequence conservation are not distinct from other non-coding elements that are under comparable purifying selection in mammals and suggest they are principal constituents of the cis-regulatory framework of mammalian development.
Sequence polymorphisms in a 58kb interval on chromosome 9p21 confer a markedly increased risk for coronary artery disease (CAD), the leading cause of death worldwide 1,2. The variants have a substantial impact on the epidemiology of CAD and other life?threatening vascular conditions since nearly a quarter of Caucasians are homozygous for risk alleles. However, the risk interval is devoid of protein?coding genes and the mechanism linking the region to CAD risk has remained enigmatic. Here we show that deletion of the orthologous 70kb noncoding interval on mouse chromosome 4 affects cardiac expression of neighboring genes, as well as proliferation properties of vascular cells. Chr4delta70kb/delta70kb mice are viable, but show increased mortality both during development and as adults. Cardiac expression of two genes near the noncoding interval, Cdkn2a and Cdkn2b, is severely reduced in chr4delta70kb/delta70kb mice, indicating that distant-acting gene regulatory functions are located in the noncoding CAD risk interval. Allelespecific expression of Cdkn2b transcripts in heterozygous mice revealed that the deletion affects expression through a cis-acting mechanism. Primary cultures of chr4delta70kb/delta70kb aortic smooth muscle cells exhibited excessive proliferation and diminished senescence, a cellular phenotype consistent with accelerated CAD pathogenesis. Taken together, our results provide direct evidence that the CAD risk interval plays a pivotal role in regulation of cardiac Cdkn2a/b expression and suggest that this region affects CAD progression by altering the dynamics of vascular cell proliferation.
A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.
With the availability of genomic sequence from numerous vertebrates, a paradigm shift has occurred in the identification of distant-acting gene regulatory elements. In contrast to traditional gene-centric studies in which investigators randomly scanned genomic fragments that flank genes of interest in functional assays, the modern approach begins electronically with publicly available comparative sequence datasets that provide investigators with prioritized lists of putative functional sequences based on their evolutionary conservation. However, although a large number of tools and resources are now available, application of comparative genomic approaches remains far from trivial. In particular, it requires users to dynamically consider the species and methods for comparison depending on the specific biological question under investigation. While there is currently no single general rule to this end, it is clear that when applied appropriately, comparative genomic approaches exponentially increase our power in generating biological hypotheses for subsequent experimental testing.
Despite the known existence of distant-acting cis-regulatory elements in the human genome, only a small fraction of these elements has been identified and experimentally characterized in vivo. This paucity of enhancer collections with defined activities has thus hindered computational approaches for the genome-wide prediction of enhancers and their functions. To fill this void, we utilize comparative genome analysis to identify candidate enhancer elements in the human genome coupled with the experimental determination of their in vivo enhancer activity in transgenic mice (1). These data are available through the VISTA Enhancer Browser (http://enhancer.lbl.gov). This growing database currently contains over 250 experimentally tested DNA fragments, of which more than 100 have been validated as tissue-specific enhancers. For each positive enhancer, we provide digital images of whole-mount embryo staining at embryonic day 11.5 and an anatomical description of the reporter gene expression pattern. Users can retrieve elements near single genes of interest, search for enhancers that target reporter gene expression to a particular tissue, or download entire collections of enhancers with a defined tissue specificity or conservation depth. These experimentally validated training sets are expected to provide a basis for a wide range of downstream computational and functional studies of enhancer function.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.