We describe a revolutionary new approach to high spectral resolution soft x-ray optics. Conventionally in the soft x-ray energy range, high spectral resolution is obtained by use of a relatively low line density grating operated in 1st order with small slits. This severely limits throughput. This limitation can be removed by use of a grating either in very high order, or with very high line density, if one can maintain high diffraction efficiency. We have developed a new technology for achieving both of these goals which should allow high throughput spectroscopy, at resolving powers of up to 106 at 1 keV. Such optics should provide a revolutionary advance for high resolution lifetime free spectroscopy, such as RIXS, and for pulse compression of chirped beams. We report recent developmental fabrication and characterization of a prototype grating optimized for 14.2 nm EUV light. The prototype grating with a 200 nm period of the blazed grating substrate coated with 20 Mo/Si bilayers with a period of 7.1 nm demonstrates good dispersion in the third order (effective groove density of 15,000 lines per mm) with a diffraction efficiency of more than 33percent.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.