Bundles of stiff filaments are ubiquitous in the living world, found both in the cytoskeleton and in the extracellular medium. These bundles are typically held together by smaller cross-linking molecules. We demonstrate, analytically, numerically, and experimentally, that such bundles can be kinked, that is, have localized regions of high curvature that are long-lived metastable states. We propose three possible mechanisms of kink stabilization: a difference in trapped length of the filament segments between two cross-links, a dislocation where the endpoint of a filament occurs within the bundle, and the braiding of the filaments in the bundle. At a high concentration of cross-links, the last two effects lead to the topologically protected kinked states. Finally, we explore, numerically and analytically, the transition of the metastable kinked state to the stable straight bundle.