Significant orbital mixing is rare in lanthanide complexes because of the limited radial extent of the 4f orbitals, which results in a generally small stabilization due to 4f orbital interactions. Nevertheless, even a small amount of additional stabilization could enhance lanthanide separations. One lanthanide complex in which orbital mixing has been extensively studied both experimentally and computationally is cerocene, COT2Ce, where COT is cyclooctatetraene. This compound has a singlet ground state with a low-lying, triplet excited state. Previous fluorescence studies on trimethylsilyl-substituted cerocenes indicate the triplet state is 0.4 eV higher in energy than the singlet state. In addition, computational studies predict that the triplet is 0.3 to 1 eV higher in energy than the singlet. The synthesis of highly pure COT2Ce by Walter and Andersen allowed its physical properties to be accurately measured. Using these measurements, we evaluate the stabilization of the 4f orbitals using two, independent approaches. A Hubbard model is used to evaluate the stabilization of the ground state due to orbital mixing. This stabilization, which is also the singlet-triplet gap, is -0.29 eV using this model. This gap was also from the temperature independent paramagnetism of COT2Ce, which yielded a value of -0.32 eV.