The lone star tick, Amblyomma americanum Linnaeus (Ixodida: Ixodidae), is emerging as an important human disease vector in the United States. While some recent studies have modeled broad-scale (regional or county-level) distribution patterns of A. americanum, less is known about how local-scale habitat characteristics drive A. americanum abundance. Such local-scale information is vital to identify targets for tick population control measures within land management units. We investigated how habitat features predict host-seeking A. americanum adult and nymph abundance within a 12-ha oak-hickory forest plot in the Missouri Ozarks. We trapped ticks using CO2-baited traps at 40 evenly spaced locations for three 24-h periods during the summer of 2015, and we measured biotic and abiotic variables surrounding each location. Of 2,008 A. americanum captured, 1,009 were nymphs, and 999 were adults. We observed spatial heterogeneity in local tick abundance (min = 0 ticks, max = 112 ticks, mean = 16.7 ticks per trap night). Using generalized linear mixed models, we found that both nymphs and adults had greater abundance in valleys as well as on northern-facing aspects. Moreover, nymph abundance was negatively related to temperature variance, while adult abundance had a negative relationship with elevation. These results demonstrate that managers in this region may be able to predict local tick abundance through simple physiognomic factors and use these parameters for targeted management action.