- Wei, Zhao;
- Lombardi, Alecio F;
- Lee, Roland R;
- Wallace, Mark;
- Masuda, Koichi;
- Chang, Eric Y;
- Du, Jiang;
- Bydder, Graeme M;
- Yang, Wenhui;
- Ma, Ya-Jun
Background
T1ρ has been extensively reported as a sensitive biomarker of biochemical changes in the nucleus pulposus (NP) and annulus fibrosis of intervertebral discs (IVDs). However, no T1ρ study of cartilaginous endplates (CEPs) has yet been reported because the relatively long echo times (TEs) of conventional clinical T1ρ sequences cannot effectively capture the fast-decaying magnetic resonance signals of CEPs, which have very short T2/T2*s. This can be overcome by using ultrashort echo time (UTE) T1ρ acquisitions.Methods
Seventeen subjects underwent UTE with adiabatic T1ρ preparation (UTE-Adiab-T1ρ) and T2-weighted fast spin echo imaging of their lumbar spines. Each IVD was manually segmented into seven regions (i.e., outer anterior annulus fibrosis, inner anterior annulus fibrosis, outer posterior annulus fibrosis, inner posterior annulus fibrosis, superior CEP, inferior CEP, and NP). T1ρ values of these sub-regions were correlated with IVD modified Pfirrmann grades and subjects' ages. In addition, T1ρ values were compared in subjects with and without low back pain (LBP).Results
Correlations of T1ρ values of the outer posterior annulus fibrosis, superior CEP, inferior CEP, and NP with modified Pfirrmann grades were significant (P<0.05) with R values of 0.51, 0.36, 0.38, and -0.94, respectively. Correlations of T1ρ values of the outer anterior annulus fibrosis, outer posterior annulus fibrosis, and NP with ages were significant with R equal to 0.52, 0.71, and -0.76, respectively. T1ρ differences of the outer posterior annulus fibrosis, inferior CEP, and NP between the subjects with and without LBP were significant (P=0.005, 0.020, and 0.000, respectively).Conclusions
The UTE-Adiab-T1ρ sequence can quantify T1ρ of whole IVDs including CEPs. This is an advance, and of value for comprehensive assessment of IVD degeneration.