Interstitial deletion in the long arm of chromosome 9 [del(9q)] is a fairly common cytogenetic finding associated with acute myeloid leukemia (AML), seen in approximately 2-5% of AML patients. However, the genomic features of the deletion remain largely unknown. Using chromosome analysis, single nucleotide polymorphism microarray, and next-generation sequencing, we characterized del(9q)s and other genomic alterations in 9 AML patients. We found several distinct features of the del(9q)s. The proximal breakpoints of the deletions are clustered within a 2.5-Mb region (chr9: 68,513,625-70,984,372; GRCh37) enriched with segmental duplications, which may represent a "hotspot" for genomic rearrangements. However, the distal breakpoints of the deletions vary significantly. In addition, the overall deleted region could be divided into a 14.4-Mb proximal constitutional region (chr9: 70,950,015-85,397,699; 9q21.11q21.32) and a 24.0-Mb distal oncogenic region (chr9: 85,397,700-109,427,261; 9q21.32q31.1). We further identified a 6.8-Mb common overlapped deletion region (CODR) in the distal region (chr9: 90,590,650-97,366,400). This CODR carries multiple genes that are reportedly involved in cancer pathogenesis. The prognostic value of the del(9q) in AML apparently depends on additional genomic alterations in the patients.