We report microscopic mechanisms for an unusual magnetization reversal behavior in Co/Pt multilayers where some of the first-order reversal curves protrude outside of the major loop. Transmission x-ray microscopy reveals a fragmented stripe domain topography when the magnetic field is reversed prior to saturation, in contrast to an interconnected pattern when reversing from a saturated state. The different domain nucleation and propagation behaviors are due to unannihilated domains from the prior field sweep. These residual domains contribute to random dipole fields that impede the subsequent domain growth and prevent domains from growing as closely together as for the interconnected pattern.