The route of O₂to and from the high-spin heme in heme-copper oxidases has generally been believed to emulate that of carbon monoxide (CO). Time-resolved and stationary infrared experiments in our laboratories of the fully reduced CO-bound enzymes, as well as transient optical absorption saturation kinetics studies as a function of CO pressure, have provided strong support for CO binding to CuB⁺ on the pathway to and from the high-spin heme. The presence of CO on CuB⁺ suggests that O₂binding may be compromised in CO flow-flash experiments. Time-resolved optical absorption studies show that the rate of O₂and NO binding in the bovine enzyme (1 × 10⁸M⁻¹s⁻¹) is unaffected by the presence of CO, which is consistent with the rapid dissociation (t½ = 1.5μs) of CO from CuB⁺. In contrast, in Thermus thermophilus (Tt) cytochrome ba3 the O₂and NO binding to heme a3 slows by an order of magnitude in the presence of CO (from 1 × 10⁹ to 1 × 10⁸M⁻¹s⁻¹), but is still considerably faster (~10μs at 1atm O₂) than the CO off-rate from CuB in the absence of O₂(milliseconds). These results show that traditional CO flow-flash experiments do not give accurate results for the physiological binding of O₂and NO in Tt ba3, namely, in the absence of CO. They also raise the question whether in CO flow-flash experiments on Tt ba3 the presence of CO on CuB⁺ impedes the binding of O₂to CuB⁺ or, if O₂does not bind to CuB⁺ prior to heme a3, whether the CuB⁺-CO complex sterically restricts access of O₂to the heme. Both possibilities are discussed, and we argue that O₂binds directly to heme a3 in Tt ba3, causing CO to dissociate from CuB⁺ in a concerted manner through steric and/or electronic effects. This would allow CuB⁺ to function as an electron donor during the fast (5μs) breaking of the OO bond. These results suggest that the binding of CO to CuB⁺ on the path to and from heme a3 may not be applicable to O₂and NO in all heme-copper oxidases. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.