The prediction and control of COVID-19 is critical for ending this pandemic. In this paper, a nonlocal SIHRDP (S-susceptible class, I-infective class (infected but not hospitalized), H-hospitalized class, R-recovered class, D-death class and P-isolated class) epidemic model with long memory is proposed to describe the multi-wave peaks for the spread of COVID-19. Based on the basic reproduction number R0 , which is completely controlled by fractional order, the stability of the proposed system is studied. Furthermore, the numerical simulation is conducted to gauge the performance of the proposed model. The results on Hunan, China, reveal that R0<1 suggests that the disease-free equilibrium point is globally asymptotically stable. Likewise, the situation of the multi-peak case in China is presented, and it is clear that the nonlocal epidemic system has a superior fitting effect than the classical model. Finally an adaptive impulsive vaccination is introduced based on the proposed system. Then employing the real data of France, India, the USA and Argentina, parameters identification and short-term forecasts are carried out to verify the effectiveness of the proposed model in describing the case of multiple peaks. Moreover, the implementation of vaccine control is expected once the hospitalized population exceeds 20% of the total population. Numerical results of France, Indian, the USA and Argentina shed light on the varied effect of vaccine control in different countries. According to the vaccine control imposed on France, no obvious effect is observed even consider reducing human contact. As for India, although there will be a temporary increase in hospitalized admissions after execution of vaccination control, COVID-19 will eventually disappear. Results on the USA have seen most significant effect of vaccine control, the number of hospitalized individuals drops off and the disease is eventually eradicated. In contrast to the USA, vaccine control in Argentina has also been very effective, but COVID-19 cannot be completely eradicated.