Vascular endothelial growth factor (VEGF) is one of the best characterized angiogenic factors controlling placental angiogenesis; however, how VEGF regulates placental angiogenesis has not yet completely understood. In this study, we found that all the components of assembling a functional NADPH oxidase (NOX2, p22(phox), p47(phox), p67(phox), and Rac1) are expressed in ovine fetoplacental artery endothelial cells (oFPAECs) in vitro and ex vivo. Treatment with VEGF (10 ng/ml) rapidly and transiently activated Rac1 in oFPAECs in vitro and increased Rac1 association with p67(phox) in 5 min. Intracellular superoxide formation began to significantly increase after 25-30 min of VEGF stimulation, which was mediated by both VEGFR1 and VEGFR2. VEGF also stimulated oFPAE cell proliferation and migration and enhanced the formation of tube-like structures on Matrigel matrix. In oFAPEC transfected with specific Rac1 small interfering RNA (siRNA, 40 nm), VEGF-induced intracellular superoxide formation was completely abrogated in association with a 78% reduction of endogenous Rac1. In oFPAE cells transfected with the specific Rac1 siRNA, but not with transfection reagent alone or scrambled control siRNA, VEGF-induced cell proliferation, migration, and tube-like structure formation were dramatically inhibited. Pretreatment of an NADPH oxidase inhibitor apocynin also abrogates the VEGF-stimulated intracellular superoxide production and DNA synthesis in oFPAECs. Taken together, our results demonstrated that a Rac1/Nox2-based NADPH oxidase system is present in placental endothelial cells. This NADPH oxidase system appears to generate the second messenger superoxide that plays a critical role in the signaling control of the VEGF-induced placental angiogenesis.