BACKGROUND: As a primary vector of bluetongue virus (BTV) in the US, seasonal abundance and diel flight activity of Culicoides sonorensis has been documented, but few studies have examined how time of host-seeking activity is impacted by environmental factors. This knowledge is essential for interpreting surveillance data and modeling pathogen transmission risk. METHODS: The diel host-seeking activity of C. sonorensis was studied on a California dairy over 3 years using a time-segregated trap baited with CO2. The relationship between environmental variables and diel host-seeking activity (start, peak, and duration of activity) of C. sonorensis was evaluated using multiple linear regression. Fishers exact test and paired-sample z-test were used to evaluate the seasonal difference and parity difference on diel host-seeking activity. RESULTS: Host-seeking by C. sonorensis began and reached an activity peak before sunset at a higher frequency during colder months relative to warmer months. The time that host-seeking activity occurred was associated low and high daily temperature as well as wind speed at sunset. Colder temperatures and a greater diurnal temperature range were associated with an earlier peak in host-seeking. Higher wind speeds at sunset were associated with a delayed peak in host-seeking and a shortened duration of host-seeking. Parous midges reached peak host-seeking activity slightly later than nulliparous midges, possibly because of the need for oviposition by gravid females before returning to host-seeking. CONCLUSIONS: This study demonstrates that during colder months C. sonorensis initiates host-seeking and reaches peak host-seeking activity earlier relative to sunset, often even before sunset, compared to warmer months. Therefore, the commonly used UV light-baited traps are ineffective for midge surveillance before sunset. Based on this study, surveillance methods that do not rely on light trapping would provide a more accurate estimate of host-biting risk across seasons. The association of environmental factors to host-seeking shown in this study can be used to improve modeling or prediction of host-seeking activity. This study identified diurnal temperature range as associated with host-seeking activity, suggesting that Culicoides may respond to a rapidly decreasing temperature by shifting to an earlier host-seeking time, though this association needs further study.