- Chen, Ziman;
- Yan, Dong;
- Ma, Liang;
- Zhang, Yahui;
- Zhang, Jingyan;
- Li, Hui;
- Khoo, Rebecca;
- Zhang, Jian;
- Svec, Frantisek;
- Lv, Yongqin;
- Tan, Tianwei
The preparation of flawless and defect-free mixed matrix membranes (MMMs) comprising metal-organic framework (MOF) and polymer is often difficult owing to the poor MOF/polymer interface compatibility. Herein, we present the synthesis of an important family of pillared-layered MOFs with polymerizable moieties based on the parent structure [Zn2L2P]n [L = vinyl containing benzenedicarboxylic acid linkers; P = 4,4'-bipyridine (bipy)]. The crystalline structures of polymerizable MOFs were analyzed using single-crystal X-ray crystallography. The presence of reactive double bonds in MOFs was verified by the successful thiol-ene click reaction with sulfhydryl compounds. The subsequent copolymerization of polymerizable MOFs with organic monomers produced mixed matrix membranes with enhanced MOF/polymer interfacial adhesion that enabled good separation efficiency of CO2 from flue gas. This strategy provides a stimulating platform to the preparation of highly efficient MMMs that are capable of mitigating energy consumption and environment issues.