There is a need to develop renewable fuels and chemicals that will help meet global demands for energy and synthetic chemistry feedstock, without contributing to climate change or environmental degradation. Isoprene (C 5H 8) is one such key chemical ingredient, required for the production of synthetic rubber or plastic products, and a potential biofuel. Enabling a sustainable microbial fermentation for the production of isoprene is an attractive alternative to a petroleum origin. This work demonstrates transgenic expression of the Pueraria montana (kudzu vine) isoprene synthase gene (kIspS) and heterologous isoprene production in Escherichia coli. Enhancements in the amount of E. coli isoprene production were achieved upon over-expression of the native 2-C-methyl-d-erythritol-4-phosphate (MEP) biosynthetic pathway and, independently, upon heterologous over-expression of the entire mevalonic acid (MVA) pathway. A direct comparison of the efficiency of cellular organic carbon flux through the MEP and MVA pathways is provided, under conditions when these are expressed in the same host using the same plasmid, and same ribosome-binding sites (RBS). These alternative isoprenoid biosynthetic pathways were assembled in and expressed through a superoperon, suitable for transformation of E. coli. Introduction of specific RBS and nucleotide spacers between individual genes in the superoperon structure enabled maximal expression in E. coli batch cultures and translated to an improved production from 0. 4 mg isoprene per liter of culture (control) to 5 mg isoprene per liter of culture (MEP superoperon transformants) and up to 320 mg isoprene per liter of culture (MVA superoperon transformants). This 800-fold increase in isoprene concentration from the MVA transformants and the attendant isoprene-to-biomass 0. 78:1 carbon partitioning ratio suggested that the engineered MVA pathway introduces a bypass in the flux of endogenous substrate in E. coli to isopentenyl-diphosphate and dimethylallyl-diphosphate, thus overcoming flux limitations imposed upon the regulation of the native MEP pathway by the cell. © 2012 Springer Science+Business Media, LLC.