Skip to main content
eScholarship
Open Access Publications from the University of California

Off-resonance insensitive complementary SPAtial Modulation of Magnetization (ORI-CSPAMM) for quantification of left ventricular twist

  • Author(s): Reyhan, M
  • Natsuaki, Y
  • Ennis, DB
  • et al.
Abstract

Purpose To evaluate Off Resonance Insensitive Complementary SPAtial Modulation of Magnetization (ORI-CSPAMM) and Fourier Analysis of STimulated echoes (FAST) for the quantification of left ventricular (LV) systolic and diastolic function and compare it with the previously validated FAST+SPAMM technique. Materials and Methods LV short-axis tagged images were acquired with ORI-CSPAMM and SPAMM in healthy volunteers (n = 13). The FAST method was used to automatically estimate LV systolic and diastolic twist parameters from rotation of the stimulated echo and stimulated anti-echo about the middle of k-space subsequent to ∼3 min of user interaction. Results There was no significant difference between measures obtained for FAST+ORI-CSPAMM and FAST+SPAMM for mean peak twist (12.9 ± 3.4° versus 11.9 ± 4.0°; P = 0.4), torsion (3.3 ± 0.9°/cm versus 2.9 ± 1.0°/cm, P = 0.3), circumferential-longitudinal shear angle (9.1 ± 3.0° versus 8.2 ± 3.4°, P = 0.3), twisting rate (79.6 ± 20.2°/s versus 68.2 ± 23.4°/s, P = 0.1), untwisting rate (-117.5 ± 31.4°/s versus -106.6 ± 32.4°/s, P = 0.3), normalized untwisting rate (-9.3 ± 2.0/s versus -9.9 ± 4.4/s, P = 0.7), and time of peak twist (281 ± 18 ms versus 293 ± 25 ms, P = 0.04). FAST+ORI-CSPAMM also provided measures of duration of untwisting (148 ± 21 ms) and the ratio of rapid untwisting to peak twist (0.9 ± 0.3). Bland-Altman analysis of FAST+ORI-CSPAMM and FAST+SPAMM twist data demonstrates excellent agreement with a bias of -0.1° and 95% confidence intervals of (-1.0°, 3.2°). Conclusion FAST+ORI-CSPAMM is a semi-automated method that provides a quick and quantitative assessment of LV systolic and diastolic twist and torsion. ORI-CSPAMM corrects off-resonance accrued during tagging preparation and readout and visibly removes chemical shift from the tagging pattern, which confers greater robustness to the derived quantitative measures. Copyright © 2013 Wiley Periodicals, Inc.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View