Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

The Subarray MVDR Beamformer : : A Space-Time Adaptive Processor Applied to Active Sonar


The research for this thesis was mainly performed at the NATO Underwater Research Center, now named the Center for Maritime Research and Experimentation (CMRE). The purpose of the research was to improve the detection of underwater targets in the littoral ocean when using active sonar. Currently these detections are being made by towed line arrays using a delay and sum beamformer for bearing measurements and noise suppression. This method of beamforming has can suffer from reverberation that commonly is present in the littoral environment. A proposed solution is to use an adaptive beamformer which can attenuate reverberation and increase the bearing resolution. The adaptive beamforming algorithms have existed for a long time and typically are not used in the active case due to limited amount of observable data that is needed for adaptation. This deficiency is caused by the conflicting requirements for high Doppler resolution for target detection and small time windows for building up full-rank covariance estimates. The algorithms also are sensitive to bearing estimate errors that commonly occur in active sonar systems. Recently it has been proposed to overcome these limitations through the use of reduced beamspace adaptive beamforming. The Subarray MVDR beamformer is analyzed, both against simulated data and against experimental data collected by CMRE during the GLINT/NGAS11 experiment in 2011. Simulation results indicate that the Subarray MVDR beamformer rejects interfering signals that are not effectively attenuated by conventional beamforming. The application of the Subarray MVDR beamformer to the experimental data shows that the Doppler spread of the reverberation ridge is reduced, and the bearing resolution improved. The signal to noise ratio is calculated at the target location and also shows improvement. These calculated and observed performance metrics indicate an improvement of detection in reverberation noise

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View