Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Electronic Theses and Dissertations bannerUC Berkeley

The Effects of Neurosteroids, such as Pregnenolone Sulfate and its receptor, TrpM3 in the Retina.


Pregnenolone sulfate (PregS) is the precursor to all steroid hormones and is produced in neurons in an activity dependent manner. Studies have shown that PregS production is upregulated during certain critical periods of development, such as in the first year of life in humans, during adolescence, and during pregnancy. Conversely, PregS is decreased during aging, as well as in several neurodevelopmental and neurodegenerative conditions. There are several known targets of PregS, such as a positive allosteric modulator NMDA receptors, sigma1 receptor, and as a negative allosteric modulator of GABA-A receptors. Recently a transient receptor potential channel, TrpM3 has been shown to be activated by PregS. TrpM3 is a heat sensitive (between 33-40oC), non-selective cation channel that is outwardly rectifying. PregS has been shown to increase the frequency of post-synaptic currents in the hippocampus and developing cerebellum, induce calcium transients in a subset of retinal ganglion cells, and enhance memory formation in rodents. Furthermore, PregS mediated TrpM3 activation induces calcium dependent transcription of early immediate genes, suggesting that activation of this channel may produce lasting effects on cells and systems in which it is activated. Because PregS is abundant during critical periods of development, we hypothesized that it may play a significant role during development. Furthermore, the role of PregS or its receptor TrpM3, has not previously been well characterized in the retina. To address this question, in this dissertation, we examine the role of the neurosteroid PregS and its receptor, TrpM3, on retinal waves, which are characteristic of specific stages of synaptic development and connectivity. Briefly, we show that PregS induces a TrpM3 dependent prolonged calcium transient, which is absent in the TrpM3-/- animals and increases the correlation of cell participation in waves. We also show that TrpM3 increases the frequency of post-synaptic currents, indicating a mechanism of action presynaptic to retinal ganglion cells, but that TrpM3 is expressed primarily in RGCs and Müller glia. Taken together, our results indicate that both PregS and TrpM3 are important in modulating spontaneous synaptic activity during development.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View