Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Honey bee stop-signal production: temporal distribution and effect of feeder crowding

Published Web Location

https://www.apidologie.org/articles/apido/abs/2010/01/m09045/m09045.html
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

The honey bee stop-signal may decrease recruitment by causing waggle dancers to cease dancing when food patch conditions deteriorate. However, little is known about how signaling may change during the time a signaler is inside the nest and what triggers signal production. All previous feeder studies have used crowded feeders to stimulate stop-signal production. We focused on individual foragers and found that bees returning from uncrowded feeders also produced stop-signals. The number of signals produced by these foragers was roughly proportional to the duration of their stay in the nest. Foragers significantly decreased the rate of signal production throughout their nest stay, potentially reflecting a decrease in signaling motivation with increased time inside the nest. There is a slight trend for signal pulse duration to increase and fundamental frequency to decrease throughout a signaler's nest stay. We examined the effect of crowded feeder conditions by training 20 foragers to a feeder and following focal forager behavior before and after reducing the number of feeding spots. This manipulation increased feeding wait time from 0 s to 409.4±264.3 s without significantly increasing colony nectar intake. Our treatment did not change signal production by focal foragers but significantly doubled the number of stop-signals that focal foragers received inside the nest. At least 38% of these received signals came from foragers visiting the same feeder. Thus, the colony produces stop-signals at a baseline level that can be elevated in response to crowded foraging conditions. © INRA/DIB-AGIB/EDP Sciences, 2009.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item