Skip to main content
Open Access Publications from the University of California

Halo histories versus galaxy properties at z = 0-III. The properties of star-forming galaxies

  • Author(s): Tinker, JL
  • Hahn, CH
  • Mao, YY
  • Wetzel, AR
  • et al.

Published Web Location
No data is associated with this publication.

© 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. We measure how the properties of star-forming central galaxies correlate with large-scale environment, d, measured on 10 h-1Mpc scales. We use galaxy group catalogues to isolate a robust sample of central galaxies with high purity and completeness. The galaxy properties we investigate are star formation rate (SFR), exponential disc scale length Rexp, and Sersic index of the galaxy light profile, nS. We find that, at all stellar masses, there is an inverse correlation between SFR and δ, meaning that above-average star-forming centrals live in underdense regions. For nSand Rexp, there is no correlation with δ at M* ≲ 1010.5M⊙, but at higher masses there are positive correlations; a weak correlation with Rexpand a strong correlation with nS. These data are evidence of assembly bias within the star-forming population. The results for SFR are consistent with a model in which SFR correlates with present-day halo accretion rate, Mh. In thismodel, galaxies are assigned to haloes using the abundance-matching ansatz, which maps galaxy stellar mass onto halo mass. At fixed halo mass, SFR is then assigned to galaxies using the same approach, but Mhis used to map onto SFR. The best-fitting model requires some scatter in the Mh-SFR relation. The Rexpand nSmeasurements are consistent with a model in which both of these quantities are correlated with the spin parameter of the halo, λ. Halo spin does not correlate with δ at low halo masses, but for higher mass haloes, high-spin haloes live in higher density environments at fixed Mh. Put together with the earlier instalments of this series, these data demonstrate that quenching processes have limited correlation with halo formation history, but the growth of active galaxies, as well as other detailed galaxies properties, are influenced by the details of halo assembly.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item