Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

The mosdef survey: Excitation properties of z ∼ 2.3 star-forming galaxies

  • Author(s): Shapley, AE
  • Reddy, NA
  • Kriek, M
  • Freeman, WR
  • Sanders, RL
  • Siana, B
  • Coil, AL
  • Mobasher, B
  • Shivaei, I
  • Price, SH
  • Groot, LD
  • et al.

Published Web Location

http://iopscience.iop.org/article/10.1088/0004-637X/801/2/88/pdf
No data is associated with this publication.
Abstract

We present results on the excitation properties of z ∼ 2.3 galaxies using early observations from the MOSFIRE Deep Evolution Field (MOSDEF) Survey. With its coverage of the full suite of strong rest-frame optical emission lines, MOSDEF provides an unprecedented view of the rest-frame optical spectra of a representative sample of distant star-forming galaxies. We investigate the locations of z ∼ 2.3 MOSDEF galaxies in multiple emission-line diagnostic diagrams. These include the [O iii]λ5007/Hβ vs. [N ii]/Hα and [O iii]λ5007/Hβ vs. [S ii]λλ6717, 6731/Hα "BPT" diagrams, as well as the O vs. R excitation diagram. We recover the well-known offset in the star-forming sequence of high-redshift galaxies in the [O iii]λ5007/Hβ vs. [N ii]/Hα BPT diagram relative to Sloan Digital Sky Survey star-forming galaxies. However, the shift for our rest-frame optically selected sample is less significant than for rest-frame-UV selected and emission-line selected galaxies at z ∼ 2. Furthermore, we find that the offset is mass-dependent, only appearing within the low-mass half of the z ∼ 2.3 MOSDEF sample, where galaxies are shifted toward higher [N ii]/Hα at fixed [O iii]/Hβ. Within the [O iii]λ5007/Hβ vs. [S ii]/Hα and O vs. R diagrams, we find that z ∼ 2.3 galaxies are distributed like local ones, and therefore attribute the shift in the [O iii]λ5007/Hβ vs. [N ii]/Hα BPT diagram to elevated N/O abundance ratios among lower-mass () high-redshift galaxies. The variation in N/O ratios calls into question the use at high redshift of oxygen abundance indicators based on nitrogen lines, but the apparent invariance with redshift of the excitation sequence in the O vs. R diagram paves the way for using the combination of O and R as an unbiased metallicity indicator over a wide range in redshift. This indicator will allow for an accurate characterization of the shape and normalization of the mass-metallicity relationship over more than 10 Gyr. 32 23 32 23 32 23 32 23

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item