Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Electronic Theses and Dissertations bannerUC Berkeley

Loop group actions on categories and Whittaker invariants

Abstract

We develop some aspects of the theory of D-modules on schemes and indschemes of pro-finite type. These notions are used to define D-modules on (algebraic) loop groups and, consequently, actions of loop groups on DG categories. We also extend the Fourier-Deligne transform to Tate vector spaces.

Let N be the maximal unipotent subgroup of a reductive group G. For a non-degenerate character c of N((t)), and a category C acted upon by N((t)), there are two possible notions of the category of (N((t)),c)-objects: the invariant category and the coinvariant category. These are the Whittaker categories of C, which are in general not equiva- lent.

However, there is always a natural functor T from the coinvariant category to the invariant category. We conjecture that T is an equivalence, provided that the N((t))-action on C is the restriction of a G((t))-action.

We prove this conjecture for G=GLn and show that the Whittaker categories can be obtained by taking invariants of C with respect to a very explicit pro-unipotent group subscheme (not indscheme) of G((t)).

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View