Skip to main content
Open Access Publications from the University of California


UCLA Previously Published Works bannerUCLA

Predicting tree species richness in urban forests


There has been an increasing interest in urban forests and the levels of biodiversity they contain. Currently there are no spatially explicit maps of tree species richness in urban areas. This research tests and identifies GIS and remote sensing metrics (climate, area, productivity, three-dimensional structure) hypothesized to be associated with species richness in native forests and identifies methods that can be applied to predict and map tree species richness in cities. We quantified tree species richness, floristic composition, and structure in 28 1-ha plots in the city of Los Angeles. Climate and remote sensing metrics from high-resolution aerial imagery (10 cm), QuickBird (60 cm), Landsat (30 m), MODIS (250 m), and airborne lidar (2 m) were collected for each plot. There were 1208 individual stems and 108 trees identified to species. Species richness ranged from 2 to 31 species per ha and averaged 17 species per ha. Tree canopy cover from QuickBird explained the highest portion of variance (54%) in tree species richness followed by NDVI from Landsat (42%). Tree species richness can be higher in residential urban forests than native forests in the United States. Spatially explicit species richness maps at 1 ha can be created and tested for cities in order to identify both hotspots and coldspots of tree species richness and changes in species richness over time.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View