Skip to main content
Download PDF
- Main
Uncertainty Estimation in Continuous Models applied to Reinforcement Learning
- Akbar, Ibrahim
- Advisor(s): Atanasov, Nikolay
Abstract
We consider the model-based reinforcement learning framework where we are interested in learning a model and control policy for a given objective. We consider modeling the dynamics of an environment using Gaussian Processes or a Bayesian neural network. For Bayesian neural networks we must define how to estimate uncertainty through a neural network and propagate distributions in time. Once we have a continuous model we can apply standard optimal control techniques to learn a policy. We consider the policy to be a radial basis policy and compare it's performance given the different models on a pendulum environment.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%