Skip to main content
Open Access Publications from the University of California


UCLA Previously Published Works bannerUCLA

Solvent and mutation effects on the nucleation of amyloid β-protein folding


Experimental evidence suggests that the folding and aggregation of the amyloid beta-protein (Abeta) into oligomers is a key pathogenetic event in Alzheimer's disease. Inhibiting the pathologic folding and oligomerization of Abeta could be effective in the prevention and treatment of Alzheimer's disease. Here, using all-atom molecular dynamics simulations in explicit solvent, we probe the initial stages of folding of a decapeptide segment of Abeta, Abeta(21-30), shown experimentally to nucleate the folding process. In addition, we examine the folding of a homologous decapeptide containing an amino acid substitution linked to hereditary cerebral hemorrhage with amyloidosis-Dutch type, [Gln-22]Abeta(21-30). We find that: (i) when the decapeptide is in water, hydrophobic interactions and transient salt bridges between Lys-28 and either Glu-22 or Asp-23 are important in the formation of a loop in the Val-24-Lys-28 region of the wild-type decapeptide; (ii) in the presence of salt ions, salt bridges play a more prominent role in the stabilization of the loop; (iii) in water with a reduced density, the decapeptide forms a helix, indicating the sensitivity of folding to different aqueous environments; and (iv) the "Dutch" peptide in water, in contrast to the wild-type peptide, fails to form a long-lived Val-24-Lys-28 loop, suggesting that loop stability is a critical factor in determining whether Abeta folds into pathologic structures.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View