Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Artificial neural network identification of exercise expiratory flow-limitation in adults.

Abstract

Identification of ventilatory constraint is a key objective of clinical exercise testing. Expiratory flow-limitation (EFL) is a well-known type of ventilatory constraint. However, EFL is difficult to measure, and commercial metabolic carts do not readily identify or quantify EFL. Deep machine learning might provide a new approach for identifying EFL. The objective of this study was to determine if a convolutional neural network (CNN) could accurately identify EFL during exercise in adults in whom baseline airway function varied from normal to mildly obstructed. 2931 spontaneous exercise flow-volume loops (eFVL) were placed within the baseline maximal expiratory flow-volume curves (MEFV) from 22 adults (15 M, 7 F; age, 32 yrs) in whom lung function varied from normal to mildly obstructed. Each eFVL was coded as EFL or non-EFL, where EFL was defined by eFVLs with expired airflow meeting or exceeding the MEFV curve. A CNN with seven hidden layers and a 2-neuron softmax output layer was used to analyze the eFVLs. Three separate analyses were conducted: (1) all subjects (n = 2931 eFVLs, [GRALL]), (2) subjects with normal spirometry (n = 1921 eFVLs [GRNORM]), (3) subjects with mild airway obstruction (n = 1010 eFVLs, [GRLOW]). The final output of the CNN was the probability of EFL or non-EFL in each eFVL, which is considered EFL if the probability exceeds 0.5 or 50%. Baseline forced expiratory volume in 1 s/forced vital capacity was 0.77 (94% predicted) in GRALL, 0.83 (100% predicted) in GRNORM, and 0.69 (83% predicted) in GRLOW. CNN model accuracy was 90.6, 90.5, and 88.0% in GRALL, GRNORM and GRLOW, respectively. Negative predictive value (NPV) was higher than positive predictive value (PPV) in GRNORM (93.5 vs. 78.2% for NPV vs. PPV). In GRLOW, PPV was slightly higher than NPV (89.5 vs. 84.5% for PPV vs. NPV). A CNN performed very well at identifying eFVLs with EFL during exercise. These findings suggest that deep machine learning could become a viable tool for identifying ventilatory constraint during clinical exercise testing.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View