Skip to main content
eScholarship
Open Access Publications from the University of California

Numerical investigation of airborne contaminant transport under different vortex structures in the aircraft cabin.

  • Author(s): Li, Fei
  • Liu, Junjie
  • Ren, Jianlin
  • Cao, Xiaodong
  • Zhu, Yifang
  • et al.
Abstract

Airborne contaminants such as pathogens, odors and CO2 released from an individual passenger could spread via air flow in an aircraft cabin and make other passengers unhealthy and uncomfortable. In this study, we introduced the airflow vortex structure to analyze how airflow patterns affected contaminant transport in an aircraft cabin. Experimental data regarding airflow patterns were used to validate a computational fluid dynamics (CFD) model. Using the validated CFD model, we investigated the effects of the airflow vortex structure on contaminant transmission based on quantitative analysis. It was found that the contaminant source located in a vorticity-dominated region was more likely to be "locked" in the vortex, resulting in higher 62% higher average concentration and 14% longer residual time than that when the source was on a deformation dominated location. The contaminant concentrations also differed between the front and rear parts of the cabin because of different airflow structures. Contaminant released close to the heated manikin face was likely to be transported backward according to its distribution mean position. Based on these results, the air flow patterns inside aircraft cabins can potentially be improved to better control the spread of airborne contaminant.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View