Skip to main content
Open Access Publications from the University of California


UCLA Electronic Theses and Dissertations bannerUCLA

Multi-Field/-Scale Interaction of Neoclassical Tearing Modes with Turbulence and Impact on Plasma Confinement


Neoclassical Tearing Modes (NTMs) are a major impediment in the development of operational scenarios of present toroidal fusion devices. The multi-scale and non-linear interaction of NTMs with turbulence has been an active field of theoretical plasma research in the past decade for its role in plasma confinement. However, little to no experimental effort has been devoted to explore this interaction.

As part of this thesis, dedicated experiments were conducted utilizing the full complement of the DIII-D turbulence diagnostics to study the effect of NTM on turbulence as well as the effect of turbulence on NTM growth.

The first localized measurements of long and intermediate wavelength turbulent density fluctuations and long wavelength turbulent electron temperature fluctuations modified by magnetic islands are presented. These long and intermediate wavelengths correspond to the expected Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) scales, respectively.\newpage

Two regimes were observed when tracking density fluctuations during NTM evolution: (1) small islands are characterized by steep electron temperature radial profile and turbulence levels comparable to that of the background; (2) large islands have a flat electron temperature profile and reduced turbulence level at the O-point. Radially outside of the large island, the electron temperature profile is steeper and the turbulence level increased compared to the no or small island case.

It was also found that turbulence is reduced in the O-point region compared to the X-point region. This helical structure of turbulence modification leads to a 15\% modulation of the density fluctuation power as the island rotates in the lab frame and this modulation is nearly in phase with the electron temperature modulation.

These measurements were also used to determine the turbulence penetration length scale at the island separatrix and was found that the turbulence penetration length scale is on the order of the threshold island width for temperature flattening and turbulence reduction to occur at the O-point. This suggests that the physics of island transition could be related to turbulence penetration into the island.

In addition, a novel, anisotropic, non-linear heat transport model of magnetic islands with spatially non-uniform cross-field thermal diffusivity was developed. This model was utilized to derive the diffusivity at the O-point from measured electron temperature data and it was found that the diffusivity at the O-point is 1 to 2 orders of magnitude smaller than the

background plasma transport. As the anomalously large values of the diffusivity are often attributed to turbulence driven transport, the reduction of the diffusivity is consistent with the found turbulence reduction at the O-point.

Complementing the experimental results of turbulence-NTM interaction described in this thesis, qualitative comparisons were carried out for the first time to GENE non-linear gyrokinetic turbulence simulations employing static magnetic islands. These simulations qualitatively replicate the measured 2D response of turbulence as well as the observed scaling with island size.

The consequences of the observed NTM-turbulence interaction on the global plasma confinement were studied via analyses of simultaneous changes in NTM amplitude, plasma profiles, turbulence, fluxes and confinement. It was found that the global confinement degradation is intimately linked to the turbulence enhancement outside of the island region (induced by the island).

Experimentally observed local turbulence and transport reduction at the O-point, as well as the effect of global confinement decrease was incorporated in the dynamical equation of NTMs, which shows that the NTM growth rate increases when turbulence and gradients are reduced inside the island (right after the transition from small to large island regime).

Additionally, the shrinking of NTM islands due to strong temperature perturbations associated with Edge Localized Modes was observed. Simultaneous increase in turbulence level at the O-point was also observed and the data suggests that this temporal increase of turbulence level at the O-point accelerates NTM recovery after the ELM-crash. This is facilitated via the fast turbulent cross-field transport that leads to a rapid restoration of the flat profile (and bootstrap current perturbation) at the O-point.

Finally, a series of low torque H-mode experiments were carried out to measure the perturbed ion temperature and toroidal flow profiles via CER across slowly rotating islands. Comparison of the observed flow perturbation to the gyrokinetic simulations suggests that large islands develop a vortex like plasma flow circulating around the O-point.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View