Optimal Bayes Classifiers for Functional Data and Density Ratios
Skip to main content
eScholarship
Open Access Publications from the University of California

Optimal Bayes Classifiers for Functional Data and Density Ratios

  • Author(s): Dai, Xiongtao
  • Müller, Hans-Georg
  • Yao, Fang
  • et al.

Published Web Location

https://arxiv.org/pdf/1605.03707.pdf
No data is associated with this publication.
Abstract

Bayes classifiers for functional data pose a challenge. This is because probability density functions do not exist for functional data. As a consequence, the classical Bayes classifier using density quotients needs to be modified. We propose to use density ratios of projections on a sequence of eigenfunctions that are common to the groups to be classified. The density ratios can then be factored into density ratios of individual functional principal components whence the classification problem is reduced to a sequence of nonparametric one-dimensional density estimates. This is an extension to functional data of some of the very earliest nonparametric Bayes classifiers that were based on simple density ratios in the one-dimensional case. By means of the factorization of the density quotients the curse of dimensionality that would otherwise severely affect Bayes classifiers for functional data can be avoided. We demonstrate that in the case of Gaussian functional data, the proposed functional Bayes classifier reduces to a functional version of the classical quadratic discriminant. A study of the asymptotic behavior of the proposed classifiers in the large sample limit shows that under certain conditions the misclassification rate converges to zero, a phenomenon that has been referred to as "perfect classification". The proposed classifiers also perform favorably in finite sample applications, as we demonstrate in comparisons with other functional classifiers in simulations and various data applications, including wine spectral data, functional magnetic resonance imaging (fMRI) data for attention deficit hyperactivity disorder (ADHD) patients, and yeast gene expression data.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item