Skip to main content
eScholarship
Open Access Publications from the University of California

Non-Constant Discounting in Continuous Time

Abstract

This note derives the dynamic programming equation (DPE) to a differentiable Markov Perfect equilibrium in a problem with non-constant discounting and general functional forms. Beginning with a discrete stage model and taking the limit as the length of the stage goes to 0 leads to the DPE corresponding to the continuous time problem. The note discusses the multiplicity of equilibria under non-constant discounting, calculates the bounds of the set of candidate steady states, and Pareto ranks the equilibria.

Main Content
Current View