Skip to main content
eScholarship
Open Access Publications from the University of California

Millimeter-wave polarimetry instrumentation and analysis

  • Author(s): Bierman, Evan M.
  • et al.
Abstract

The chapters in this thesis roughly follow a reverse chronological order of my work in graduate school. Chapter 1 is the culmination of work with Dr. Dowell at Caltech, motivated by Professor Keating, to study polarized Galactic emission. Although the main goal of BICEP was to search for CMB B-modes, observation time was also spent on the Galactic plane region. Initially the data were collected to understand Galactic emission as a foreground of CMB polarization; however, the final paper focused on studying Galactic physics and not the CMB. Through comparison of BICEP data to other experiments, different models of the polarization production were explored. This paper also served as the initial instrument paper for the 220 GHz hardware added to BICEP for the second and third observing seasons. Chapter 2 is the software analysis work related to the paper in Chapter 1 that either did not make it into the paper or did not pan out. To explore BICEP's capabilities and produce better maps different scan strategies were explored such as full 360° scans and elevation scanning. BICEP observations are contaminated on large scales by a noise source that has not been fully identified. Different mapmaking methods were explored to remove this systematic as well as 1/ f noise and telescope systematics to maximize recovered signal. Chapter 3 represents a sample of contributions to the BICEP telescope and the UCSD FTS. To characterize the spectral response of the BICEP telescope and the faraday rotation modulators, I helped design and construct the UCSD including layout and optical design, synthesizing wire grids, integrating the system with our lab's test cryostat, and developing software and analysis tools. My main contribution to the CMB polarization work on BICEP was analysis of calibration data. Specifically I talk about my work to understand the beams and differential pointing from observations of the Moon. Chapter 4 represents my work on Faraday Rotation devices. Initially, these devices were developed to overcome 1/ f noise and some beam systematics; however, the usage of these devices were limited and their full capabilities were not tested. The devices were shown to work generally as designed and were followed up by similar devices developed and deployed for the MBI-4 experiment

Main Content
Current View