Skip to main content
Open Access Publications from the University of California

DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle

  • Author(s): Mikheikin, A
  • Olsen, A
  • Leslie, K
  • Russell-Pavier, F
  • Yacoot, A
  • Picco, L
  • Payton, O
  • Toor, A
  • Chesney, A
  • Gimzewski, JK
  • Mishra, B
  • Reed, J
  • et al.

Progress in whole-genome sequencing using short-read (e.g., <150 bp), next-generation sequencing technologies has reinvigorated interest in high-resolution physical mapping to fill technical gaps that are not well addressed by sequencing. Here, we report two technical advances in DNA nanotechnology and single-molecule genomics: (1) we describe a labeling technique (CRISPR-Cas9 nanoparticles) for high-speed AFM-based physical mapping of DNA and (2) the first successful demonstration of using DVD optics to image DNA molecules with high-speed AFM. As a proof of principle, we used this new "nanomapping" method to detect and map precisely BCL2-IGH translocations present in lymph node biopsies of follicular lymphoma patents. This HS-AFM "nanomapping" technique can be complementary to both sequencing and other physical mapping approaches.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View