Skip to main content
eScholarship
Open Access Publications from the University of California

Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels.

  • Author(s): Horvath, Steve
  • Langfelder, Peter
  • Kwak, Seung
  • Aaronson, Jeff
  • Rosinski, Jim
  • Vogt, Thomas F
  • Eszes, Marika
  • Faull, Richard LM
  • Curtis, Maurice A
  • Waldvogel, Henry J
  • Choi, Oi-Wa
  • Tung, Spencer
  • Vinters, Harry V
  • Coppola, Giovanni
  • Yang, X William
  • et al.
Abstract

Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=-0.41, p=5.5×10-8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View