Skip to main content
Open Access Publications from the University of California


UCLA Previously Published Works bannerUCLA

Biologics May Prevent Cardiovascular Events in Rheumatoid Arthritis by Inhibiting Coronary Plaque Formation and Stabilizing High-Risk Lesions.

Published Web Location


To evaluate whether biologic disease-modifying antirheumatic drugs (DMARDs) decrease cardiovascular disease (CVD) risk in rheumatoid arthritis (RA) and whether biologic DMARDs might have a beneficial effect on coronary plaque formation or progression.


In this single-center observational cohort study, 150 patients underwent computed tomographic angiography for evaluation of coronary atherosclerosis (total, noncalcified, mixed/calcified, and low-attenuation plaque); 101 had repeat assessments within a mean ± SD of 6.9 ± 0.3 years to evaluate plaque progression. All CVD events were prospectively recorded, including cardiac death, myocardial infarction, unstable angina, revascularization, stroke, claudication, and hospitalization for heart failure. The Framingham-D'Agostino score was used to assess cardiovascular risk. The segment stenosis score was used to measure plaque burden. Odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated.


After adjustment for the segment stenosis score, the Framingham-D'Agostino score, and time-varying Disease Activity Score in 28 joints using the C-reactive protein level using marginal structural models, current biologic DMARD use was associated with lower long-term CVD risk (OR 0.15 [95% CI 0.04-0.60]). Noncalcified and low-attenuation plaque presence moderated the effect of biologic DMARDs on CVD risk; specifically, biologic DMARD use was associated with lower CVD risk in patients with noncalcified or low-attenuation plaque at baseline (OR 0.21 [95% CI 0.04-0.99] and OR 0.08 [95% CI 0.01-0.70], respectively), but not in those without noncalcified or low-attenuation plaque. Per-segment plaque progression analyses showed that biologic DMARD exposure was associated with transition of noncalcified to mixed/calcified plaque (OR 4.00 [95% CI 1.05-15.32]). Biologic DMARD exposure predicted a lower likelihood of new plaque forming in segments without plaque among patients without mixed/calcified plaque in other coronary segments (OR 0.40 [95% CI 0.17-0.93]), but not among those with calcification. Biologic DMARD treatment also predicted low-attenuation plaque loss (P = 0.042).


Our findings indicate that in RA, biologic DMARD use is associated with reduced CVD risk, protective calcification of noncalcified lesions, and lower likelihood of new plaque formation in patients with early atherosclerosis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View