Skip to main content
eScholarship
Open Access Publications from the University of California

The Maslov cycle as a Legendre singularity and projection of a wavefront set

Published Web Location

http://arxiv.org/abs/1207.0408
No data is associated with this publication.
Abstract

A Maslov cycle is a singular variety in the lagrangian grassmannian Λ(V) of a symplectic vector space V consisting of all lagrangian subspaces having nonzero intersection with a fixed one. Givental has shown that a Maslov cycle is a Legendre singularity, i.e. the projection of a smooth conic lagrangian submanifold S in the cotangent bundle of Λ(V). We show here that S is the wavefront set of a Fourier integral distributionwhich is "evaluation at 0 of the quantizations". © 2013 Sociedade Brasileira de Matemática.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item