Decision List Compression by Mild Random Restrictions
Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Decision List Compression by Mild Random Restrictions

Published Web Location
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license

A decision list is an ordered list of rules. Each rule is specified by a term, which is a conjunction of literals, and a value. Given an input, the output of a decision list is the value corresponding to the first rule whose term is satisfied by the input. Decision lists generalize both CNFs and DNFs and have been studied both in complexity theory and in learning theory. The size of a decision list is the number of rules, and its width is the maximal number of variables in a term. We prove that decision lists of small width can always be approximated by decision lists of small size, where we obtain sharp bounds for such approximation. This also resolves a conjecture of Gopalan, Meka, and Reingold (Computational Complexity, 2013) on DNF sparsification. An ingredient in our proof is a new random restriction lemma, which allows to analyze how DNFs (and more generally, decision lists) simplify if a small fraction of the variables are fixed. This is in contrast to the more commonly used switching lemma, which requires most of the variables to be fixed.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item