Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Absence of diagonal force constants in cubic Coulomb crystals

Published Web Location

https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0518
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

The quasi-harmonic model proposes that a crystal can be modelled as atoms connected by springs. We demonstrate how this viewpoint can be misleading: a simple application of Gauss's law shows that the ion-ion potential for a cubic Coulomb system can have no diagonal harmonic contribution and so cannot necessarily be modelled by springs. We investigate the repercussions of this observation by examining three illustrative regimes: the bare ionic, density tight-binding and density nearly-free electron models. For the bare ionic model, we demonstrate the zero elements in the force constants matrix and explain this phenomenon as a natural consequence of Poisson's law. In the density tight-binding model, we confirm that the inclusion of localized electrons stabilizes all major crystal structures at harmonic order and we construct a phase diagram of preferred structures with respect to core and valence electron radii. In the density nearly-free electron model, we verify that the inclusion of delocalized electrons, in the form of a background jellium, is enough to counterbalance the diagonal force constants matrix from the ion-ion potential in all cases and we show that a first-order perturbation to the jellium does not have a destabilizing effect. We discuss our results in connection to Wigner crystals in condensed matter, Yukawa crystals in plasma physics, as well as the elemental solids.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item