Exploring Interprocess Techniques for High-Performance MPI Communication
Skip to main content
Open Access Publications from the University of California

UC Riverside

UC Riverside Electronic Theses and Dissertations bannerUC Riverside

Exploring Interprocess Techniques for High-Performance MPI Communication

  • Author(s): Ouyang, Kaiming
  • Advisor(s): Chen, Zizhong
  • et al.
Creative Commons 'BY' version 4.0 license

In exascale computing era, applications are executed at larger scale than ever before, whichresults in higher requirement of scalability for communication library design. Message Pass- ing Interface (MPI) is widely adopted by the parallel application nowadays for interprocess communication, and the performance of the communication can significantly impact the overall performance of applications especially at large scale. There are many aspects of MPI communication that need to be explored for the maximal message rate and network throughput. Considering load balance, communication load balance is essential for high-performance applications. Unbalanced communication can cause severe performance degradation, even in computation-balanced Bulk Synchronous Parallel (BSP) applications. MPI communication imbalance issue is not well investigated like computation load balance. Since the communication is not fully controlled by application developers, designing communication-balanced applications is challenging because of the diverse communication implementations at the underlying runtime system. In addition, MPI provides nonblocking point-to-point and one-sided communication models where asynchronous progress is required to guarantee the completion of MPI communications and achieve better communication and computation overlap. Traditional mechanisms either spawn an additional background thread on each MPI process or launch a fixed number of helper processes on each node. For complex multiphase applications, unfortunately, severe performance degradation may occur due to dynamically changing communication characteristics. On the other hand, as the number of CPU cores and nodes adopted by the applications greatly increases, even the small message size MPI collectives can result in the huge communication overhead at large scale if they are not carefully designed. There are MPI collective algorithms that have been hierarchically designed to saturate inter-node network bandwidth for the maximal communication performance. Meanwhile, advanced shared memory techniques such as XPMEM, KNEM and CMA are adopted to accelerate intra-node MPI collective communication. Unfortunately, these studies mainly focus on large-message collective optimization which leaves small- and medium-message MPI collectives suboptimal. In addition, they are not able to achieve the optimal performance due to the limitations of the shared memory techniques. To solve these issues, we first present CAB-MPI, an MPI implementation that can identify idle processes inside MPI and use these idle resources to dynamically balance communication workload on the node. We design throughput-optimized strategies to ensure efficient stealing of the data movement tasks. The experimental results show the benefits of CAB-MPI through several internal processes in MPI, including intranode data transfer, pack/unpack for noncontiguous communication, and computation in one-sided accumulates through a set of microbenchmarks and proxy applications on Intel Xeon and Xeon Phi plat- forms. Then, we propose a novel Dynamic Asynchronous Progress Stealing model (Daps) to completely address the asynchronous progress complication; Daps is implemented inside the MPI runtime, and it dynamically leverages idle MPI processes to steal communication progress tasks from other busy computing processes located on the same node. We compare Daps with state-of-the-art asynchronous progress approaches by utilizing both microbenchmarks and HPC proxy applications, and the results show the Daps can outperform the baselines and achieve less idleness during asynchronous communication. Finally, to further improve MPI collectives performance, we propose Process-in-Process based Multiobject Interprocess MPI Collective (PiP-MColl) design to maximize small and medium-message MPI collective performance at a large scale. Different from previous studies, PiP-MColl is designed with efficient multiple senders and receivers collective algorithms and adopts Process-in-Process shared memory technique to avoid unnecessary system call and page fault overhead to achieve the best intra- and inter-node message rate and throughput. We focus on three widely used MPI collectives MPI Scatter, MPI Allgather and MPI_Allreduce and apply PiP-MColl to them. Our microbenchmark and real-world HPC application experimental results show PiP-MColl can significantly improve the collective performance at a large scale compared with baseline PiP-MPICH and other widely used MPI libraries such as OpenMPI, MVAPICH2 and Intel MPI.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View