Temperature-resolution anomalies in the reconstruction of time dynamics from energy-loss experiments
Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Temperature-resolution anomalies in the reconstruction of time dynamics from energy-loss experiments

Abstract

Inelastic scattering techniques provide a powerful approach to studying electron and nuclear dynamics, via reconstruction of a propagator that quantifies the time evolution of a system. There is now growing interest in applying such methods to very low energy excitations, such as lattice vibrations, but in this limit the cross section is no longer proportional to a propagator. Significant deviations occur due to the finite temperature Bose statistics of the excitations. Here we consider this issue in the context of high-resolution electron energy loss experiments on the copper-oxide superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$. We find that simple division of a Bose factor yields an accurate propagator on energy scales greater than the resolution width. However, at low energy scales, the effects of resolution and finite temperature conspire to create anomalies in the dynamics at long times. We compare two practical ways for dealing with such anomalies, and discuss the range of validity of the technique in light of this comparison.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View