Skip to main content
eScholarship
Open Access Publications from the University of California

An evaluation of processing methods for HumanMethylation450 BeadChip data

Abstract

Background

Illumina's HumanMethylation450 arrays provide the most cost-effective means of high-throughput DNA methylation analysis. As with other types of microarray platforms, technical artifacts are a concern, including background fluorescence, dye-bias from the use of two color channels, bias caused by type I/II probe design, and batch effects. Several approaches and pipelines have been developed, either targeting a single issue or designed to address multiple biases through a combination of methods. We evaluate the effect of combining separate approaches to improve signal processing.

Results

In this study nine processing methods, including both within- and between- array methods, are applied and compared in four datasets. For technical replicates, we found both within- and between-array methods did a comparable job in reducing variance across replicates. For evaluating biological differences, within-array processing always improved differential DNA methylation signal detection over no processing, and always benefitted from performing background correction first. Combinations of within-array procedures were always among the best performing methods, with a slight advantage appearing for the between-array method Funnorm when batch effects explained more variation in the data than the methylation alterations between cases and controls. However, when this occurred, RUVm, a new batch correction method noticeably improved reproducibility of differential methylation results over any of the signal-processing methods alone.

Conclusions

The comparisons in our study provide valuable insights in preprocessing HumanMethylation450 BeadChip data. We found the within-array combination of Noob + BMIQ always improved signal sensitivity, and when combined with the RUVm batch-correction method, outperformed all other approaches in performing differential DNA methylation analysis. The effect of the data processing method, in any given data set, was a function of both the signal and noise.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View