Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Disentangling selection on genetically correlated polygenic traits via whole-genome genealogies

Published Web Location
No data is associated with this publication.
Creative Commons 'BY-NC-ND' version 4.0 license

We present a full-likelihood method to infer polygenic adaptation from DNA sequence variation and GWAS summary statistics to quantify recent transient directional selection acting on a complex trait. Through simulations of polygenic trait architecture evolution and GWASs, we show the method substantially improves power over current methods. We examine the robustness of the method under stratification, uncertainty and bias in marginal effects, uncertainty in the causal SNPs, allelic heterogeneity, negative selection, and low GWAS sample size. The method can quantify selection acting on correlated traits, controlling for pleiotropy even among traits with strong genetic correlation (|rg|=80%) while retaining high power to attribute selection to the causal trait. When the causal trait is excluded from analysis, selection is attributed to its closest proxy. We discuss limitations of the method, cautioning against strongly causal interpretations of the results, and the possibility of undetectable gene-by-environment (GxE) interactions. We apply the method to 56 human polygenic traits, revealing signals of directional selection on pigmentation, life history, glycated hemoglobin (HbA1c), and other traits. We also conduct joint testing of 137 pairs of genetically correlated traits, revealing widespread correlated response acting on these traits (2.6-fold enrichment, p = 1.5 × 10-7). Signs of selection on some traits previously reported as adaptive (e.g., educational attainment and hair color) are largely attributable to correlated response (p = 2.9 × 10-6 and 1.7 × 10-4, respectively). Lastly, our joint test shows antagonistic selection has increased type 2 diabetes risk and decrease HbA1c (p = 1.5 × 10-5).

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item