Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

Applications of nanotechnology to the central nervous system

Abstract

Nanotechnology and nanomaterials, in general, have become prominent areas of academic research. The ability to engineer at the nano scale is critical to the advancement of the physical and medical sciences. In the realm of physical sciences, the applications are clear: smaller circuitry, more powerful computers, higher resolution instruments. However, the potential impact in the fields of biology and medicine are perhaps even grander. The implementation of novel nanodevices is of paramount importance to the advancement of drug delivery, molecular detection, and cellular manipulation. The work presented in this thesis focuses on the development of nanotechnology for applications in neuroscience. The nervous system provides unique challenges and opportunities for nanoscale research. This thesis discusses some background in nanotechnological applications to the central nervous system and details : (1) The development of a novel calcium nanosenser for use in neurons and astrocytes. We implemented the calcium responsive component of Dr. Roger Tsien's Cameleon sensor, a calmodulin-M13 fusion, in the first quantum dot-based calcium sensor. (2) The exploration of cell-penetrating peptides as a delivery mechanism for nanoparticles to cells of the nervous system. We investigated the application of polyarginine sequences to rat primary cortical astrocytes in order to assess their efficacy in a terminally differentiated neural cell line. (3) The development of a cheap, biocompatible alternative to quantum dots for nanosensor and imaging applications. We utilized a positively charged co-matrix to promote the encapsulation of free sulforhodamine B in silica nanoparticles, a departure from conventional reactive dye coupling to silica matrices. While other methods have been invoked to trap dye not directly coupled to silica, they rely on positively charged dyes that typically have a low quantum yield and are not extensively tested biologically, or they implement reactive dyes bound to larger encapsulated molecules

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View