Skip to main content
Open Access Publications from the University of California

UC Riverside

UC Riverside Electronic Theses and Dissertations bannerUC Riverside

Molecular Beam Epitaxial Growth and Characterization of Graphene and Hexagonal Boron Nitride Two-Dimensional Layers


Van der Waals (vdW) materials (also called as two-dimensional (2D) material in some literature) systems have received extensive attention recently due to their potential applications in next-generation electronics platform. Exciting properties have been discovered in this field, however, the performance and properties of the systems rely on the materials’ quality and interface significantly, leading to the urgent need for scalable synthesis of high-quality vdW crystals and heterostructures. Toward this direction, this dissertation is devoted on the study of Molecular Beam Epitaxy (MBE) growth and various characterization of vdW materials and heterostructures, especially graphene and hexagonal boron nitride (h-BN). The goal is to achieve high-quality vdW materials and related heterostructures. There are mainly four projects discussed in this dissertation.

The first project (Chapter 2) is about MBE growth of large-area h-BN on copper foil. After the growth, the film was transferred onto SiO2 substrate for characterization. It is observed that as-grown film gives evident h-BN Raman spectrum; what’s more, h-BN peak intensity and position is dependent on film thickness. N-1s and B-1s XPS peaks further suggest the formation of h-BN. AFM and SEM images show the film is flat and continuous over large area. Our synthesis method shows it’s possible to use MBE to achieve h-BN growth and could also pave a way for some unique structure, such as h-BN/graphene heterostructures and doped h-BN films by MBE.

The second project (Chapter 3) is focused on establishment of grapehene/h-BN heterostructure on cobalt (Co) film. In-situ epitaxial growth of graphene/h-BN heterostructures on Co film substrate was achieved by using plasma-assisted MBE. The direct graphene/h-BN vertical stacking structures were demonstrated and further confirmed by various characterizations, such as Raman spectroscopy, SEM, XPS and TEM. Large area heterostructures consisting of single- /bilayer graphene and multilayer h-BN were achieved. The mismatch angle between graphene and h-BN is below 1º.

The third project (Chapter 4) is about graphene growth on Fe by MBE at low temperature. Temperature-dependent growth of graphene on Fe using MBE is studied. Two-dimensional (2D), large-area graphene samples were grown on Fe thin films, and characterized by Raman, X-ray photoelectron spectroscopy, X-ray diffraction, optical microscopy, transmission electron microscopy and atomic force microscopy. Graphene is achieved on Fe at a wide growth temperature range and as low as 400 °C. The growth mechanism is studied and shows graphene growth is associated with formation and decomposition of iron carbide.

The forth part is about a convenient way to produce vdW heterostructures: graphene growth of exfoliated h-BN on Co. We demonstrated graphene/h-BN heterostructures by growing graphene onto the substrates which consist of exfoliated h-BN on Co thin film using MBE. The heterostructure samples grown at different temperatures and growth durations were characterized by Raman, optical microscopy, atomic force microscopy, microwave impedance microscopy and scanning tunneling microscopy. It is found that the graphene/h-BN heterostructures were formed by the formation of graphene underneath rather than on top of the h-BN flakes. The growth mechanism is discussed.

In summary, we develop and optimize growth of vdW materials (h-BN and graphene), and vdW heterostructures by MBE. Various characterization has been carried out to evaluate properties of the films in structural, optical and electrical aspects. Our results reveal that MBE can provide an excellent alternative way for reliable growth of high-quality and large-size vdW materials and related heterostructures, which will attract more attention for the utilization of MBE in vdW materials research.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View