Skip to main content
eScholarship
Open Access Publications from the University of California

Some $\lambda$-separable Frisch demands with utility functions

Abstract

We complete the characterization of two Frisch demand systems first developed by Browning et al (1985), and show that that these systems (i) do not restrict intertemporal substitution; but (ii) imply momentary utility functions which are additively separable in consumption. These utility functions turn out to take the well-known exponential and Stone-Geary forms.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View