Skip to main content
Download PDF
- Main
Stacked density estimation
Abstract
In this paper, the technique of stacking, previously only used for supervised learning, is applied to unsupervised learning. Specifically, it is used for non-parametric multivariate density estimation, to combine finite mixture model and kernel density estimators. Experimental results on both simulated data and real world data sets clearly demonstrate that stacked density estimation outperforms other strategies such as choosing the single best model based on cross-validation, combining with uniform weights, and even the single best model chosen by "cheating" by looking at the data used for independent testing.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%