Skip to main content
Open Access Publications from the University of California


UCLA Previously Published Works bannerUCLA

New insights into iron regulation and erythropoiesis


Purpose of review

Iron homeostasis and erythropoiesis regulate each other to ensure optimal delivery of oxygen and iron to cells and tissues. Defining the mechanisms of this crosstalk is important for understanding the pathogenesis of common conditions associated with disordered iron metabolism and erythropoiesis.

Recent findings

Stress erythropoiesis causes suppression of hepcidin to increase iron availability for hemoglobin synthesis. The erythroid hormone erythroferrone (ERFE) was identified as the mediator of this process. ERFE and additional candidates (TWSG1 and GDF15) may also mediate hepcidin suppression in ineffective erythropoiesis. Several mechanisms by which iron regulates erythropoiesis were also recently identified. Iron deficiency suppresses erythropoietin production via the IRP1-HIF2α axis to prevent excessive iron usage by erythropoiesis during systemic iron restriction. Iron restriction also directly impairs erythroid maturation by inhibiting aconitase, and this can be reversed by the administration of the aconitase product isocitrate. Another novel target is GDF11, which is thought to autoinhibit erythroid maturation. GDF11 traps show promising pharmacologic activity in models of both ineffective erythropoiesis and iron-restricted anemia.


This review summarizes exciting advances in understanding the mechanisms of iron and erythropoietic regulation, and development of novel therapeutic tools for disorders resulting from dysregulation of iron metabolism or erythropoiesis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View