Skip to main content
eScholarship
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

Reducing climate impacts of beef production: A synthesis of life cycle assessments across management systems and global regions.

  • Author(s): Cusack, Daniela F
  • Kazanski, Clare E
  • Hedgpeth, Alexandra
  • Chow, Kenyon
  • Cordeiro, Amanda L
  • Karpman, Jason
  • Ryals, Rebecca
  • et al.

Published Web Location

https://doi.org/10.1111/gcb.15509
Abstract

The global demand for beef is rapidly increasing (FAO, 2019), raising concern about climate change impacts (Clark et al., 2020; Leip et al., 2015; Springmann et al., 2018). Beef and dairy contribute over 70% of livestock greenhouse gas emissions (GHG), which collectively contribute ~6.3 Gt CO2 -eq/year (Gerber et al., 2013; Herrero et al., 2016) and account for 14%-18% of human GHG emissions (Friedlingstein et al., 2019; Gerber et al., 2013). The utility of beef GHG mitigation strategies, such as land-based carbon (C) sequestration and increased production efficiency, are actively debated (Garnett et al., 2017). We compiled 292 local comparisons of "improved" versus "conventional" beef production systems across global regions, assessing net GHG emission data from Life Cycle Assessment (LCA) studies. Our results indicate that net beef GHG emissions could be reduced substantially via changes in management. Overall, a 46 % reduction in net GHG emissions per unit of beef was achieved at sites using carbon (C) sequestration management strategies on grazed lands, and an 8% reduction in net GHGs was achieved at sites using growth efficiency strategies. However, net-zero emissions were only achieved in 2% of studies. Among regions, studies from Brazil had the greatest improvement, with management strategies for C sequestration and efficiency reducing beef GHG emissions by 57%. In the United States, C sequestration strategies reduced beef GHG emissions by over 100% (net-zero emissions) in a few grazing systems, whereas efficiency strategies were not successful at reducing GHGs, possibly because of high baseline efficiency in the region. This meta-analysis offers insight into pathways to substantially reduce beef production's global GHG emissions. Nonetheless, even if these improved land-based and efficiency management strategies could be fully applied globally, the trajectory of growth in beef demand will likely more than offset GHG emissions reductions and lead to further warming unless there is also reduced beef consumption.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View