Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

An engineered anti-CA19-9 cys-diabody for positron emission tomography imaging of pancreatic cancer and targeting of polymerized liposomal nanoparticles.

  • Author(s): Girgis, Mark D;
  • Federman, Noah;
  • Rochefort, Matthew M;
  • McCabe, Katelyn E;
  • Wu, Anna M;
  • Nagy, Jon O;
  • Denny, Christopher;
  • Tomlinson, James S
  • et al.
Abstract

Background

Antibody-based therapeutics is a rapidly growing field. Small engineered antibody fragments demonstrate similar antigen affinity compared with the parental antibody but have a shorter serum half-life and possess the ability to be conjugated to nanoparticles. The goal of this study was to engineer an anti-carbohydrate antigen 19-9 (CA19-9) cys-diabody fragment in hopes of targeting nanoparticles to pancreatic cancer.

Methods

The anti-CA19-9 cys-diabody was created by engineering a C-terminal cysteine residue into the DNA single-chain Fv construct of the anti-CA19-9 diabody and expressed in NS0 cells. Maleimide chemistry was used to conjugate the cys-diabody to polymerized liposomal nanoparticles (PLNs) through the cysteine residues. Flow cytometry was used to evaluate targeting of cys-diabody and cys-diabody-PLN conjugate to human pancreatic cancer cell lines. The cys-diabody was radiolabeled with a positron emitter ((124)I) and evaluated in a mouse model of CA19-9-positive and CA19-9-negative xenografts with micro-positron emission tomography/micro-computed tomography at successive time intervals after injection. Percentage of injected dose per gram of radioactivity was measured in blood and tumor to provide objective confirmation of the micro-positron emission tomographic images.

Results

Tumor xenograft imaging of the anti-CA19-9 cys-diabody demonstrated an average tumor-to-blood ratio of 3.0 and positive-to-negative tumor ratio of 7.4. Successful conjugation of the cys-diabody to PLNs was indicated by flow cytometry showing specific binding of cys-diabody-PLN conjugate to human pancreatic cancer cells in vitro.

Conclusions

Our results show that the anti-CA19-9 cys-diabody targets pancreatic cancer providing specific molecular imaging in tumor xenograft models. Furthermore, the cys-diabody-PLN conjugate demonstrates target-specific binding of human pancreatic cancer cells with the potential to deliver targeted treatment.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View