Skip to main content
eScholarship
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

Strontium source and depth of uptake shifts with substrate age in semiarid ecosystems

  • Author(s): Coble, AA
  • Hart, SC
  • Ketterer, ME
  • Newman, GS
  • Kowler, AL
  • et al.
Abstract

Without exogenous rock-derived nutrient sources, terrestrial ecosystems may eventually regress or reach a terminal steady state, but the degree to which exogenous nutrient sources buffer or slow to a theoretical terminal steady state remains unclear. We used strontium isotope ratios (87Sr/86Sr) as a tracer and measured 87Sr/86Sr values in aeolian dust, soils, and vegetation across a well-constrained 3 Myr semiarid substrate age gradient to determine (1) whether the contribution of atmospheric sources of rock-derived nutrients to soil and vegetation pools varied with substrate age and (2) to determine if the depth of uptake varied with substrate age. We found that aeolian-derived nutrients became increasingly important, contributing as much as 71% to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of ecosystem development in a semiarid climate. The depth of nutrient uptake increased on older substrates, demonstrating that trees in arid regions can acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results demonstrate that global and regional aeolian transport of nutrients to local ecosystems is a vital process for ecosystem development in arid regions. Furthermore, these aeolian nutrient inputs contribute to deep soil nutrient pools, which become increasingly important for maintaining plant productivity over long time scales.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View