Skip to main content
eScholarship
Open Access Publications from the University of California

Disability-Specific Atlases of Gray Matter Loss in Relapsing-Remitting Multiple Sclerosis

  • Author(s): MacKenzie-Graham, A
  • Kurth, F
  • Itoh, Y
  • Wang, H-J
  • Montag, MJ
  • Elashoff, R
  • Voskuhl, RR
  • et al.
Abstract

Multiple sclerosis (MS) is characterized by progressive gray matter (GM) atrophy that strongly correlates with clinical disability. However, whether localized GM atrophy correlates with specific disabilities in patients with MS remains unknown.To understand the association between localized GM atrophy and clinical disability in a biology-driven analysis of MS.In this cross-sectional study, magnetic resonance images were acquired from 133 women with relapsing-remitting MS and analyzed using voxel-based morphometry and volumetry. A regression analysis was used to determine whether voxelwise GM atrophy was associated with specific clinical deficits. Data were collected from June 28, 2007, to January 9, 2014.Voxelwise correlation of GM change with clinical outcome measures (Expanded Disability Status Scale and Multiple Sclerosis Functional Composite scores).Among the 133 female patients (mean [SD] age, 37.4 [7.5] years), worse performance on the Multiple Sclerosis Functional Composite correlated with voxelwise GM volume loss in the middle cingulate cortex (P < .001) and a cluster in the precentral gyrus bilaterally (P = .004). In addition, worse performance on the Paced Auditory Serial Addition Test correlated with volume loss in the auditory and premotor cortices (P < .001), whereas worse performance on the 9-Hole Peg Test correlated with GM volume loss in Brodmann area 44 (Broca area; P = .02). Finally, voxelwise GM loss in the right paracentral lobulus correlated with bowel and bladder disability (P = .03). Thus, deficits in specific clinical test results were directly associated with localized GM loss in clinically eloquent locations.These biology-driven data indicate that specific disabilities in MS are associated with voxelwise GM loss in distinct locations. This approach may be used to develop disability-specific biomarkers for use in future clinical trials of neuroprotective treatments in MS.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View