Skip to main content
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

A Component Decomposition Model for Evaluating Atmospheric Effects in Remote Sensing

Published Web Location
No data is associated with this publication.

A radiance value of a target pixel recorded by a remote sensor can be decomposed into three components: (1) attenuated target signature, (2) pure atmospheric radiation, and (3) the contribution made by the ground through the atmospheric scattering process. Given the meteorological and optical parameters of a layer-structured atmosphere, its transmittance and radiance distribution can be accurately calculated with a plane-parallel radiative transfer model. For a uniform surface, the ground contribution can be obtained by comparing radiances for an atmosphere over a black but non-emitting surface and the same atmosphere with an underlying ground of given albedo or temperature. For an inhomogeneous surface, the first two components remain the same as long as the surface is a plane. The third may be estimated using the locally averaged top-of-atmosphere radiance. An atmospheric point spread function is calculated by a Monte Carlo approach and is used for retrieving the ground signature through a deconvolution procedure. © 1987 VNU science press.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item